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U Abstract

IWe propose a regular architecture, called recursive gate-arrays, suitable for circuits

with modules of non-uniform size. A set of n (rectangular and L-shaped) modules can

be placed in a recursive gate-array occupying O(Amin) area, where Amin is the sum of

area of the modules. The placement can be obtained in O(n log n) time.
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I Design automation is motivated by the complexity of present day computing systems in

3 the VLSI environment. The use of a regular structure facilitates the design process. In

gate-array architecture a square region of the plane is partitioned into equal-sized square

3 subregions and each module (functional cell) is placed in a distinct region.

a Consider a circuit M which is a set of modules {M I,..., M,j}, where n is assumed to be

a perfect square. Let a, denote the area of module Mi. A gate-array layout of y requires

3 Q(na,,,) area, where cqn. = maxi ai is the area of the largest module of y. Thus, gate-arrays

are suitable for circuits with "equal-sized" modules [CFKNS]. For circuits with non-uniform

I size modules the gate-array layout may result in excessive wastage of the layout area. In this

paper, we propose a recursive-gate-array structure which requires O(Aa.) area to lay out

an arbitrary circuit u, consisting of rectangular and L-shaped modules, where A,, = -- a.

3 In a recursive-gate-array (RGA) architecture, a square region of the plane is partitioned

into equal-sized square subregions. Each square subregion either contains a module or is

I itself an RGA (see Figure 1).

3 Layout of a graph G = (V, E), in the unit-square-grid U = (P, L) (see [LP] for a formal

definition of grids suitable for routing) is an embedding of G into U. Namely, each vertex

u E V is mapped to a grid-point p E P and each edge e E E is realized by a sequence

3 (t,..., 4) of grid-edges (4, E L). We assume that each grid edge is used by at most one

wire (i.e., using knock-knee layout mode where overlap of wires is not allowed [T]). Each

3 module Mi is layout of a graph Gj; boundary of each module is either rectangular or L-

shaped. Area of each module is the area (measured in terms of grid units) enclosed by its

U boundary (see Figure 2).

* If two modules correspond to the layout of the same graph then we say they can be

converted to each other. If two modules with the same area (in an asymptotic sense) canI
!1
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i Figure 1: An RGA consisting of 15 modules
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Figure 2: An L-shaped module with area 32

U be converted to each other then they are called equivalent. Consider a module M occupying

3 (grid) columns 1 thru e. If we remove all (horizontal) wires between column i and column

i + 1 we obtain two modules: one with i columns and the other with i-i columns. We say M

3 has been partitioned along x = i. Hereafter, we write M = (w, f) representing a rectangular

module M with width w and length t; by convention w < e. The next lemma shows a way

I o reconfigure rectangular modules without excessive wastage.

I Lemma 1 There exists a module M' = (w', f') equivalent to a given module M = (w, t), for

3 Proof: This result has been established in [L] for w' = V/' . Here, we prove the result

for w < w' < VT. Assume V occupies columns I thru t. We partition M along columns

2
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I Figure 3: Converting a module

3 x =,x=2,... ,and x =L) into k equal modules M 1,.. ., Mk, where Mi = (w, .) for

all i. We place the southwest corner of Mi at the grid point (1,w(i - 1) + 1) and therefore

3 its northeast corner at the grid point (L, wi) (see Figure 3). Next we interconnect Mi and

Mit+, 1 < i < k - 1, as they were connected in M, that is, we add wires to realize the

3 removed wires. The module M' = (w', ') is the rectangle enclosing all submodules and wires

with w' = wk and f' = ' + 2w (see Figure 3).

The area of M' is a' = w'e = wk(I + 2w) = a + 2w2 k, where a is the area of M.

3 Next, we establish a bound on the extra area used by this layout. By hypothesis we know

w' =wk < v = V/ orwk< Vt. Since we have assumedw< f(wehave),w< vI.

By combining these two we get w2k < a, or equivalently, a' < a + 2a. Since M' and M

correspond to the same graph and a' = e(a) then M' and M are equivalent. D

Using the previous lernma we can change the aspect ratio (width/length) of a rectangular

module. Our placement technique consists of two phases. In the first phase we convert all

I
I
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Figure 4: Converting an L-shaped module to a rectangular module

the modules into rectangles and in the second phase we reconfigure them appropriately.

Phase 1. [Conversion to Rectangles

In this phase, all L-shaped modules are converted into rectangles. Let a,b,c,d,e, and f

3 denote the six sides of an L-shaped module M in Figure 4, starting from the left side in a

clockwise ordering. The area of M is denoted by a.

Case 1) length of side e = G(V') and length of side b = E(Vr

I Since the area of M is 0(a) (more precisely, a) then jcj = O(v'a) and Idi = O(v'), where

Ixl is length of side x. Let M' be the smallest rectangle enclosing M, and let a' denote its

area (see Figure 4). Note a'= a + Iclldl = at + O(a). Therefore, a' = O(a).

I Case 2) length of side e = o(v'a)

3 We partition M (by cutting the nets N 1,... N,, where s < le) into two rectangles M1

and M2, where M, = (a, b) and M2 = (e, d). We denote areas of vI1 and M 2 by a1 (= ab)

I and a 2(= ed), respectively. (see Figure 4)

3 We convert both M1 and M2 into squares MI and M2 of sides a, and a2, respectively (see

Lemma 1). Without loss of generality, assume a, _> a2. Note that a' = E(a). We place M2

4
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Figure 5: Interconnecting two sub-modules

in a square M'2 of side a,. We place M, and M2', with total area E(a), next to each other.

I Nets N 1,..., N, are realized using s horizontal line and s vertical line. Thus each dimension

is enlarged by s = o(V'a-). (see Figure 5)

Case 3) length of side b = o(v'a)

Analysis is symmetric to Case 2.

I Thus we can write the following lemma.

I Lemma 2 An L-shaped module can be converted into an equivalent rectangular module.

Phase 2. PlacementI
In this phase, first we convert all rectangles (output of Phase 1) into squares, as described

3 in Lemma 1. We call the side of the smallest square one unit. Next we place each square in a

square of side 2i units, for some integer i. Note that the length of the side of the latter square

I is at most twice the length of the side of the former one, and thus, its area is at most four times

the area of the former one. We obtain a set of square modules p* = {Mj*,..., M,}, where

a* denote the area of M!. By virtue of Lemma 1 and Lemma 2 we know A*,i = O(Ain),3 where A*i, = , .

3 We first place every four modules of side length 2' in a module of side length 21+1. This

5
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Figure 6: Recursive gate-array of 01,...,

process is continued till there are no more than three modules of each size. This gives a set

m of blocks B 1,..., Bk, each of which is a recursive gate-array. Note that the sum of areas of

all the blocks B is A* . Next, we sort all the blocks with respect to their area and obtain

an ordering {(B x, B1 , B,),. . ., (Bi1, Br2, B.)}, where groups of three blocks are all of the

same size. Note that some of B,-s may not exist. Let bi be the side of BTs and bi < bi, for

i < i'. Let /3 denote the group of equal-sized blocks (Bi, B1., B, 3). Inductively assume that

3 i3x, .. . , i~, have been placed in a recursive gate array of side 2bi. We can place il,. .. , +j

in a recursive gate-array of side 2bj+j as follows. Take a square of side 2bj+j and partition it

I into four squares of side bi+,. Place Bi , B1r2, and B, in three of the squares and place

3 the recursive gate-array corresponding to 1 .... , .. 3, with side 2bi, in the fourth square. This

is always possible since 2bi < bj+j (see Figure 6).

m By induction, we conclude that ll,..., Ot, can be placed in a recursive gate-array of side

3 2bt. Since sum of the areas of Bis is A. (or O(Arin)), and is greater than b (for there is

at least one module with side bt) then (2bt) 2 = e(Ar,,). Note that each (conversion) step

3 takes 0(1) time per module and sorting requires a total of O(n log n) time. We conclude:

m Theorem -1 A recursive gate-array layout of n modules, with minimum achievable area,

can be obtained in O(n log n) time.

3 The proposed placement technique has been implemented. An example is given in Figure 7.
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